Reorganization of the actin cytoskeleton upon G-protein coupled receptor signaling.

نویسندگان

  • Sourav Ganguly
  • Roopali Saxena
  • Amitabha Chattopadhyay
چکیده

The actin cytoskeleton is involved in a multitude of cellular responses besides providing structural support. While the role of the actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, reorganization of the actin cytoskeleton upon signaling by G-protein coupled receptors (GPCRs) represents a relatively unexplored area. The G-protein coupled receptor superfamily is an important protein family in mammals, involved in signal transduction across membranes. G-protein coupled receptors act as major signaling hubs and drug targets. The serotonin(1A) receptor is a representative member of the G-protein coupled receptor superfamily and plays a crucial role in the generation and modulation of various cognitive, developmental and behavioral functions. In order to monitor the changes in the actin cytoskeleton upon serotonin(1A) receptor signaling in a quantitative manner, we developed an approach based on high magnification imaging of F-actin in cells, followed by image reconstruction. Our results suggest that the actin cytoskeleton is reorganized in response to serotonin(1A) receptor signaling. In addition, we show that reorganization of the actin cytoskeleton is strongly dependent on adenosine 3',5'-cyclic monophosphate level, and is mediated by the activation of protein kinase A. Our results are consistent with the possibility of a feedback mechanism involving the actin cytoskeleton, adenosine 3',5'-cyclic monophosphate level and the serotonin(1A) receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLC-gamma1 signaling pathway and villin activation are involved in actin cytoskeleton reorganization induced by Na+/Pi cotransport up-regulation.

BACKGROUND The brief incubation of opossum kidney (OK) cells with low P(i) results in Na+/P(i) cotransport up-regulation and in substantial, but transient, cytoskeletal reorganization. In this study, we examined signaling events involved in the depolymerization of microfilaments. RESULTS Confocal laser scanning microscopy, immunoblot and immunoprecipitation experiments revealed villin co-loca...

متن کامل

β-arrestin-dependent actin reorganization: bringing the right players together at the leading edge.

First identified as mediators of G-protein-coupled receptor desensitization and internalization and later as signaling platforms, β-arrestins play a requisite role in chemotaxis and reorganization of the actin cytoskeleton, downstream of multiple receptors. However, the precise molecular mechanisms underlying their involvement have remained elusive. Initial interest in β-arrestins as facilitato...

متن کامل

Mechanical force-activated phospholipase D is mediated by Galpha12/13-Rho and calmodulin-dependent kinase in renal epithelial cells.

The renal glomerulus, the site of plasma ultrafiltration, is exposed to mechanical force in vivo arising from capillary blood pressure and fluid flow. Studies of cultured podocytes demonstrate that they respond to stretch by altering the structure of the actin cytoskeleton, but the mechanisms by which physical force triggers this architectural change and the signaling pathways that lead to gene...

متن کامل

Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization.

Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) is a receptor, specific for MHC class I molecules, that inhibits lymphoid and myeloid cells. Here, we analyzed the molecular and cellular mechanisms by which ILT2 modulates T cell activation in primary CTLs and transfected T cell lines. We found that cross-linking with the TCR and the activity of Src tyrosine kinase p56(lck) were r...

متن کامل

SCAR, a WASP-related Protein, Isolated as a Suppressor of Receptor Defects in Late Dictyostelium Development

G protein-coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein-coupled receptors, the cARs. In a strain where the cAR2 receptor gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1808 7  شماره 

صفحات  -

تاریخ انتشار 2011